EEE Smart Floating Farms

The Third Agricultural Revolution: Toward a connected, inclusive and sustainable agriculture

52

Arras, June 2016

Where are we heading to?...

2050 = 9.1 Billion people

h

Consuming resources and land...On the other hand, we have plenty of water space that we could transform into a productive tissue...

since **25** out of 35 world Megacities have a physical access to water (seas, lakes or rivers)

Shenzen Tokyo **Singapore** Mumbai Jakarta Cairo HK Shangai EU **Los Angeles** Chicago NY Seattle Tokyo Singapore Mumbai Jakarta Cairo HK Shangai Sao Paulo México Doha Osaka Bangkok Abu Dhabi Dubai Istanbul **Montreal** Jeddah **Kuwait city** Seoul Karachi **Sydney** and a long etc...

"We want to bring Agricultural production closer to where it is actually consumed, reducing food mileage and making it more fresh and accessible to the people"

Why?

- Megacities fast growing pace & population
- By 2030, food demand is predicted to increase by 50%(70% by 2050) - United Nations
- Increased wealth and shifting diets
- Avoid huge amount of food imports + reducing food mileage
- Limited land availability(land scarce) and land premium prices
- A more controlled, cleaner and sustainable farming aquaculture high volume production and aquaponics
- Year-round high yield production, not depending on external/weather conditions
- Guarantee local food quality control

We aim for a complementary alternative

-Singapore, Gulf, US(fish), HK, etc Climate:Bangladesh(floodings), Droughts (California) **Overpopulation:** China, India

- -Annual production, policulture
- -Self-sufficiency
- -Modularity/flexibility
- -Materials life cycle

21st century opportunities

Autonomous platforms

Districts-neighborhoods

But HOW?....

Via a combination of different existing technologies available in the market into a single Floating Farm module

Inspired by the traditional Fish Farms grid configuration

Cluster of 6 modules a productive arrangement

Project main structure / Components

Materials cycles within a cradle to cradle approach / Biosphere-technosphere

Roof level Photovoltaic / CSP solar power plant. towards self-sufficiency

Middle Level Crops-Production

Some Products examples for a potential Market (Crops type could vary according to the project geographical location)

Groupers

Seabass

Snappers

Milkfish

Tuskfish

Nai Bai

Eggplant

Cabbage

Leeks

Mache

Majoram

Peppermint

Lower level Fish Farms Aim of an Integrated Multi-Trophic Aquaculture (IMTA)

Towards a smaller scale prototype **35m x 60m** footprint (2100 m2) Preliminar studies (output, costs, etc)

Pontoons: CLT floating structures

144699-008

image: Paolo timber pontoons

Structure studies

Prototype studies: Middle level: Crops

Level-1-Hydroponics

Staff areas (Office,Breakfast room, WC's/changing rooms)

Hydroponic Total crop production area= 1110 sqm

Prototype studies: Hydroponics system

Prototype studies: Lower level: Fish

Level-0-Aquaculture

"Learn from yesterday, live for today, hope for tomorrow. The important thing is not to stop questioning"

Albert Einstein

